SOCIAL NETWORK ANALYSIS DALAM PENGGUNAAN TAGAR #BOYCOTT SEBAGAI DAMPAK KONFLIK

Authors

  • Muhammad Fachrul Salam Institut Teknologi dan Bisnis Kalla
  • Namirah Khairunnisa Institut Teknologi dan Bisnis Kalla
  • Kiky Resky Ramadhani Sucipto Institut Teknologi dan Bisnis Kalla

DOI:

https://doi.org/10.32663/hwm58750

Keywords:

Social Network Analysis, Twitter API, Cancel Culture, Centrality Metrics, Modularity and Density Metrics

Abstract

This study analyzes the #BoycottMcDonalds hashtag network on Twitter social media using Social Network Analysis (SNA) method to identify influential actors and the level of interaction that occurs in the network using centrality, density, and modularity metrics. Of the 2,468 tweets obtained through crawling Twitter data using the Twitter API, after the data preparation stage (pre-processing) there are only 810 tweets that are ready to be analyzed in Gephi. Determining influential actors in the #BoycottMcDonalds hashtag network is calculated using centrality metrics, namely degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality. The analysis results show that the irishpopeye account occupies the highest position in out-degree with a weight of 43 and in closeness centrality with a weight of 1.0. The second influental account is the mcdonalds account with the highest eigenvector centrality weight of 1.0 and the third influential account is the drloupis account with a fairly high eigenvector centrality and degree centrality value. As for the level of the interaction that occurs in the network, based on the modularity metric value obtained of 0.934 and density of 0.001 which indicates that the level of interaction in the #BoycottMcDonalds network is low.

References

Khuram, U., & Kilani, I. (2023). Network Science In Social Media Analysis: Analyzing Information Diffusion And Viral Trends. Authorea. https://doi.org/10.22541/au.169454335.55769902/v1

Kihal, F. (2023). Social Network Analysis Approach And Its Applications In Communication Studies-Systematic Reading In Mechanisms And Methods. Full Text Book Of Rimar Congress 7, 65–90. https://doi.org/10.47832/rimarcongress7-4

Kumar, S., & Srivastava, I. (2023). Global Marketing Strategies Of Mcdonald’s. International Journal For Multidisciplinary Research (IJFMR), 5(3). www.ijfmr.com

Kuncoro, W. A., Sediyono, E., & Hartomo, K. D. (2023). Analisis Kolaborasi Hubungan Karyawan Menggunakan Metode Social Network Analysis (Studi Kasus Dinas Kearsipan Dan Perpustakaan Kabupaten Boyolali). Jurnal Transformatika, 20(2), 60. https://doi.org/10.26623/transformatika.v20i2.6240

Kurniawan, D., Iriani, A., & Manongga, D. (2020). Pemanfaatan Social Network Analysis (SNA) Untuk Menganalisis Kolaborasi Karyawan Pada PT. Arum Mandiri Group. Transformatika, 17(2). https://journals.usm.ac.id/index.php/transformatika

Napolitano, E. (2024, Januari 5). Mcdonald’s Ceo Says Israel-Hamas War Is Having A “Meaningful” Impact On Its Business. https://www.cbsnews.com/news/mcdonalds-ceo-boycott-support-israel-hamas-war-protest/.

Nugroho, A. C. (2024, Februari 6). Efek Aksi Boikot, Penjualan Mcdonald’s Meleset Dari Perkiraan Di Kuartal Iv/2024. https://ekonomi.bisnis.com/read/20240206/620/1738598/ efek-aksi-boikot-penjualan-mcdonalds-meleset-dari-perkiraan-di-kuartal-iv2024.

Oktora, R., & Alamsyah, A. (2017). Pola Interaksi Dan Aktor Paling Berperan Dalam Event Jgtc 2013 Melalui Media Sosial Twitter Menggunakan SNA. Jurnal Manajemen Indonesia, 14(3), 201. https://doi.org/10.25124/jmi.v14i3.370

Radjah, E. G., Iriani, A., & Manongga, D. H. F. (2023). Analisis Terhadap Tagar #Lgbt Di Twitter Menggunakan Analisis Jaringan Sosial (SNA). Jurnal Media Informatika Budidarma, 7(1), 300. https://doi.org/10.30865/mib.v7i1.5476

Rifai, A., Rachmawati, E. P., & Wicaksono, D. A. (2022). Social Network Analysis Dalam Mengukur Keaktifan Promosi Universitas Di Media Sosial Twitter. The Indonesian Journal Of Computer Science, 11(3). https://doi.org/10.33022/ijcs.v11i3.3097

Setiamukti, M. F., & Nasvian, M. (2023). Social Network Analysis #USUTTUNTAS Pada Media Social Twitter. Ekspresi Dan Persepsi : Jurnal Ilmu Komunikasi, 6(1), 124–137. https://doi.org/10.33822/jep.v6i1.5427

Sitorus, A. M. H. (2022). Social Network Analysis (SNA) Tentang Protes Digital Di Twitter: Studi Pada Tagar #Cabutpermenjht56tahun. Sosioglobal : Jurnal Pemikiran Dan Penelitian Sosiologi, 7(1), 84–94. https://jurnal.unpad.ac.id/sosioglobal/search/authors/view?firstname=alhamudin&middlename=maju%20hamonangan&lastname=sitorus&affiliation=&country=id

Surya, T. G., Aleah, N. J. A., Kartiwi, M., & Ihsanto, E. (2020). Social Network Analysis Using Python Data Mining. 2020 8th International Conference On Cyber And It Service Management (CITSM), 1–6. https://doi.org/10.1109/citsm50537.2020.9268866

Susilawati, A. T., Lestari, N. A., & Nina, P. A. (2023). Analisis Sentimen Publik Pada Twitter Terhadap Boikot Produk Israel Menggunakan Metode Naïve Bayes. Nian Tana Sikka : Jurnal Ilmiah Mahasiswa, 2(1), 26–35. https://doi.org/10.59603/niantanasikka.v2i1.240

Utami, A., & Alamsyah, A. (2019). Analisis Karakteristik Strategi Konten E-Commerce Indonesia Menggunakan Pendekatan Social Network Analysis Untuk Market Intelligence. Jurnal Manajemen Dan Bisnis: Performa, 15(2), 116–123. https://doi.org/10.29313/performa.v0i0.3473

Wilding, D., Fray, P., Molitorisz, S., & Mckewon, E. (2018). The Impact Of Digital Platforms On News And Journalistic Content. Nsw.

Yanuar, D., Muharman, N., Yudha, M. Y. T. P., Rahmawati, R., Anisah, N. A., & Maini, M. S. (2023). Cancel Culture Sebagai Bentuk Kontrol Sosial Di Twitter. Jurnal Media Dan Komunikasi, 3(2), 120–135. https://doi.org/10.20473/medkom.v3i2.44044

Downloads

Published

2024-12-31

Issue

Section

Articles