APLIKASI KECERDASAN BUATAN DAN PEMAHAMAN MESIN DALAM PERTANIAN URBAN: TINJAUAN SISTEMATIS DAN PERSPEKTIF MASA DEPAN

Authors

DOI:

https://doi.org/10.32663/ja.v23i2.5311

Keywords:

artificial intelligence, carbon footprint, machine learning, vertical farming

Abstract

This study aims to conduct a systematic and comprehensive literature review on the applications of artificial intelligence and machine learning in vertical farming, focusing on technology optimization, economic aspects, and environmental sustainability. The method used is a systematic literature review (SLR) of open-access academic publications from reputable international databases such as Scopus, Web of Science, and Google Scholar, with a publication timeframe spanning the last five years (2018-2023). The review results indicate that the most widely applied soilless cultivation technologies are hydroponics, aeroponics, and aquaponics, with aeroponics demonstrating the highest water use efficiency. The integration of IoT, smart sensors, and AI can increase crop productivity; however, the carbon footprint of these systems is highly dependent on the energy source used. The main barriers to adoption are high initial investment and operational energy costs. This article contributes to updating and expanding the understanding of the applications of artificial intelligence and machine learning in vertical farming, as well as identifying research gaps and proposing directions for technology and policy development oriented towards sustainability and profitability

References

Al-Kodmany, K. (2018). The vertical farm: A review of developments and implications for the vertical city. Buildings, 8(2), 24. https://doi.org/10.3390/buildings8020024

Barbosa, G. L., Gadelha, F. D. A., Kublik, N., Proctor, A., Reichelm, M. C., Weissinger, E., & Halmemies-Beauchet-Filleau, A. (2015). The next generation of vertical farming. Trends in Plant Science, 20(11), 669-671.https://doi.org/10.1016/j.tplants.2015.08.006

Bazeley, P., & Jackson, K. (2013). Qualitative data analysis with NVivo. SAGE Publications. https://uk.sagepub.com/en-gb/eur/qualitative-data-analysis-with-nvivo/book241832

Benke, K., & Tomkins, B. (2017). Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy, 13(1), 13-26. https://doi.org/10.1080/15487733.2017.1394054

Bugbee, B., & Salisbury, F. B. (1988). An interative whole-plant system to measure biomass production and root-zone environmental parameters non-destructively. Journal of Plant Physiology, 132(5), 572-578. https://doi.org/10.1016/S0176-1617(88)80135-3

Despommier, D. (2013). Farming up the city: The rise of urban vertical farms. Trends in Biotechnology, 31(7), 388-389. https://doi.org/10.1016/j.tibtech.2013.04.008

Graamans, L., Baeza, E., van den Dobbelsteen, A., Tsafaras, I., & Stanghellini, C. (2018). Plant factories versus greenhouses: Comparison of resource use efficiency. Agricultural Systems, 160, 31-43. https://doi.org/10.1016/j.agsy.2017.11.005

Grahnert, A., Brugger, A., & Finkbeiner, M. (2014). Life cycle assessment of urban vertical farming: System design and sensitivity analysis. International Journal of Agricultural Resources, Governance and Ecology, 10(3/4), 235-254. https://doi.org/10.1504/IJARGE.2014.064709

Kalantari, F., Tahir, O. M., Joni, R. A., & Fatemi, E. (2017). Opportunities and challenges in sustainability of vertical farming: A review. Journal of Landscape Ecology, 10(2), 1-12. https://doi.org/10.1515/jlecol-2017-0017

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele University Technical Report TR/SE-0401. https://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf

Kumar, P., Sharma, A., & Singh, A. (2021). Economic feasibility and environmental impact assessment of vertical farming. Journal of Cleaner Production, 289, 125756. https://doi.org/10.1016/j.jclepro.2020.125756

Mendes, W., Balmer, J., Kaethler, T., & Rhoads, A. (2008). Using land to grow community: The role of community gardens in promoting neighborhood social capital. Journal of Planning Education and Research, 27(4), 435-449. https://doi.org/10.1177/0739456X08317255

Mitchell, C. A., Both, A. J., Bourget, C. M., Burr, J. F., Kubota, C., Lopez, R. G., ... & Runkle, E. S. (2012). LEDs for urban agriculture. Trends in Plant Science, 17(12), 726-734. https://doi.org/10.1016/j.tplants.2012.09.002

Orsini, F., Gasperi, D., Marchetti, L., & Romani, M. (2020). Urban food production in the face of climate change. Environmental Science & Policy, 107, 144-152. https://doi.org/10.1016/j.envsci.2020.02.017

Pope, C., Ziebland, S., & Mays, N. (2000). Qualitative research in health care: Analysing qualitative data. BMJ, 320(7227), 114-116. https://doi.org/10.1136/bmj.320.7227.114

Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., ... & Travasso, M. I. (2014). Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press. https://www.ipcc.ch/report/ar5/wg2/

Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C., ... & Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1(8), 441-446. https://doi.org/10.1038/s41893-018-0114-0

Resh, H. M. (2013). Hydroponic food production: A definitive guidebook for the advanced home gardener and the commercial hydroponic grower. CRC Press. https://www.crcpress.com/Hydroponic-Food-Production-A-Definitive-Guidebook-for-the-Advanced-Home-Gardener/Resh/p/book/9781439880420

Sanyé-Mengual, E., Oliver-Solà, J., Montero, J. I., Rieradevall, J., & Antón, A. (2015). Environmental assessment of different construction alternatives for greenhouse structures in Mediterranean conditions. Journal of Cleaner Production, 87, 450-457. https://doi.org/10.1016/j.jclepro.2014.10.027

Seto, K. C., Fragkias, M., Güneralp, B., & Reilly, M. K. (2011). A meta-analysis of global urban land expansion. PLoS ONE, 6(8), e23777. https://doi.org/10.1371/journal.pone.0023777

Singh, J., Kaur, M., & Kaur, A. (2020). Controlled environment agriculture: A review on advances and potential future directions. Agriculture, 10(4), 133. https://doi.org/10.3390/agriculture10040133

Specht, K., Siebert, R., Thomaier, S., Freisinger, U. B., Sawicka, M., Werner, A., ... & Henckel, D. (2014). Urban agriculture of the future: An overview of sustainability aspects. Agronomy for Sustainable Development, 34(1), 21-44. https://doi.org/10.1007/s13593-013-0156-4

Thomaier, S., Specht, K., Henckel, D., Dierich, A., Siebert, R., Freisinger, U. B., & Sawicka, M. (2015). Farming in and on buildings: Current practice and future perspectives of multi-storey urban agriculture in Berlin. Landscape and Urban Planning, 136, 196-206. https://doi.org/10.1016/j.landurbplan.

Tripathi, A., Chatterjee, A., & Singh, R. (2022). Integration of AI and ML in vertical farming: A pathway to sustainable urban agriculture. Sustainable Cities and Society, 79, 103704. https://doi.org/10.1016/j.scs.2022.103704

United Nations. (2019). World population prospects 2019: Highlights. Department of Economic and Social Affairs. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

Downloads

Published

2025-12-22

How to Cite

APLIKASI KECERDASAN BUATAN DAN PEMAHAMAN MESIN DALAM PERTANIAN URBAN: TINJAUAN SISTEMATIS DAN PERSPEKTIF MASA DEPAN. (2025). Jurnal Agroqua: Media Informasi Agronomi Dan Budidaya Perairan, 23(2), 293-302. https://doi.org/10.32663/ja.v23i2.5311