Model Prediksi Kenaikan Permukaan Air Laut Menggunakan Data Satelit Altimery Jason-1 dengan pendekatan Algoritma Long-Short Term Memory (Studi Kasus: Teluk Jakarta)
DOI:
https://doi.org/10.32663/georaf.v7i2.3203Keywords:
Keywords: Forcasting, Sea Level Rise, Jakarta Bay, Long-Short Term MemoryAbstract
The capital city of Jakarta is the area with the highest population density in Indonesia with a population density of 16,937 people/sq km. Topographically, DKI Jakarta is located in the lowlands and is vulnerable to natural disasters, especially sea level rise. Data on sea level rise records show The trend of sea level rise is clearly visible in this tide gauge record from 1984 to 2004, at a rate of about 10mm/year. This certainly needs special attention to find out how much sea level rise will be so that it can be used as a coastal reference in making Jakarta regional policies. One way to find out the rate of sea level rise is by forecasting. In modeling time series forcing requires a model that can accommodate the time interval and the variables involved in the calculation. Each variable has a value depending on its past value and also on other past value variables. Therefore, we use the Long Short-Term Memory (LSTM) algorithm for forecasting sea level rise in Jakarta Bay. We use data from the last 30 years to model sea level rise in Jakarta Bay. The results show that there will be a maximum increase of 140 centimeters in 2040 with a maximum area of 6144.2 ha.
Downloads
References
Cao, Anh, Miguel Esteban, Ven Paolo Bruno Valenzuela, Motoharu Onuki, Hiroshi Takagi, Nguyen Danh Thao, And Nobuyuki Tsuchiya. 2021. “Future Of Asian Deltaic Megacities Under Sea Level Rise And Land Subsidence: Current Adaptation Pathways For Tokyo, Jakarta, Manila, And Ho Chi Minh City.” Current Opinion In Environmental Sustainability 50(June 2020):87–97. Doi: 10.1016/J.Cosust.2021.02.010.
Chimmula, Vinay Kumar Reddy, And Lei Zhang. 2020. “Time Series Forecasting Of Covid-19 Transmission In Canada Using Lstm Networks.” Chaos, Solitons And Fractals 135. Doi: 10.1016/J.Chaos.2020.109864.
Darlan, Yudi, Ildrem Syafri, Vijaya Isnaniawardhani, And Adjat Sudradjat. 2020. “Karakteristik Penurunan Dasar Laut Perairan Teluk Jakarta.” Jurnal Geologi Kelautan 18(1):23–36. Doi: 10.32693/Jgk.18.1.2020.645.
Lingkungan, Teknik, Akademi Teknik, Tirta Wiyata, Reosa Andika, Analisis Kerentanan, Pipa Air, Minum Terhadap, Banjir Rob, A. Pendahuluan, Menggunakan Sig, Priok Pam, And Jaya Dki. 2021. “Analisis Kerentanan Aksesoris Dan Pipa Air Minum Terhadap Banjir Rob Menggunakan Sig Di Kecamatan Tanjung Priok Pam Jaya Dki Jakarta Merupakan Bagian Dari Proses Pasang Menyebabkan Dampak Yang Luas Terhadap Kenaikan Permukaan Air Laut Adalah Berbatasan De.” 68–75.
Mataburu, Ilham Badaruddin, Muhammad Azriel, And Sahid Rayuna. 2022. “Analisis Wilayah Rawan Banjir Das Cimanuk Hulu Menggunakan Model Complete Mapping Analysis Dan Sig.”
Sherstinsky, Alex. 2020. “Fundamentals Of Recurrent Neural Network (Rnn) And Long Short-Term Memory (Lstm) Network.” Physica D: Nonlinear Phenomena 404:132306. Doi: 10.1016/J.Physd.2019.132306.
Triana, Karlina, And A’an Johan Wahyudi. 2020. “Sea Level Rise In Indonesia: The Drivers And The Combined Impacts From Land Subsidence.” Asean Journal On Science And Technology For Development 37(3):115–21. Doi: 10.29037/Ajstd.627.
Downloads
Published
Issue
Section
License
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License. which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.