The critical period of aluminum stress on soybean root growth

Authors

  • Danner Sagala Universitas Prof Dr Hazairin SH, Indonesia
  • Eka Suzanna Agrotechnology Study Program, Faculty of Agriculture, Universitas Prof Dr Hazairin SH
  • Prihanani Prihanani Agrotechnology Study Program, Faculty of Agriculture, Universitas Prof Dr Hazairin SH

DOI:

https://doi.org/10.32663/ba.v1i1.1279

Keywords:

crops, growth stage, saturated-soil-culture, soybean, tidal swamp

Abstract

Aluminum is prevalent in soils of tidal swamps. Soybean is known to be very sensitive to aluminum stress and so when tidal swamps are converted to soybean cropland, considerable effort and expense are required to overcome Al toxicity in soybean roots. It is therefore necessary to determine at what time in early development soybeans can best endure aluminum stress and identify aluminum-tolerant cultivars. This study was conducted by testing the impact of aluminum exposure on three soybean cultivars (Tanggamus, Karasumame, and M652) (relative to no-exposure controls) at four time periods at 10, 20, and 30 days after planting. No significant effect of aluminum on root growth in the first five days after exposure was observed, but the toxic effects became evident after soybeans had been exposed to aluminum for 10 days. Soybean seedlings that experienced aluminum stress earliest (at 10 days after planting) were more negatively impacted by Al exposure than seedlings exposed later (e.g., 30 days after planting). Root growths of the three cultivars we tested in this study were all detrimentally impacted by aluminum exposure. However, the M652 cultivar was the most sensitive to aluminum exposure. We conclude that the critical threshold period for soybean root growth to succumb to aluminum stress is within the first 30 days after planting, whereas the tolerance to aluminum stress occurs only during the first 10 days of exposure.

References

Dermawan, R. (2011). Respon genotipe sorgum [Sorghum bicolor (L.) Moench] terhadap pemupukan P pada berbagai taraf kejenuhan aluminium di tanah masam. Institut Pertanian Bogor.
Djayusman, M., Suastika, I. W., & Soelaeman, Y. (2001). Refleksi pengalaman dalam pengembangan sistem usaha pertanian di lahan pasang surut, Pulau Rimau. In Seminar Hasil Penelitian Pengembangan Sistem Usaha Pertanian Lahan Pasang Surut Sumatera Selatan. Bogor (ID): Pusat Penelitian dan Pengembangan Tanah dan Agroklimat.
Duressa, D., Soliman, K., & Chen, D. (2010). Identification of aluminum responsive genes in Al-tolerant soybean line PI 416937. International Journal of Plant Genomics, 2010, 164862.
Duressa, D., Soliman, K., Taylor, R., & Senwo, Z. (2011). Proteomic Analysis of Soybean Roots under Aluminum Stress. International Journal of Plant Genomics, 2011, 282531.
Fischer, R., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897–912.
Ghulamahdi, M., Melati, M., Aziz, S. A., Junaedi, A., Sahuri, Puspitasari, Y., & Sagala, D. (2013). Agronomical perfomances of soybean cultivated under saturated soil culture on tidal swamps. In Suharsono, H. Ehara, H. Minarsih, K. G. Wiryawan, Miftahuddin, M. Yunus, … U. Widyastuti (Ed.), The 7th Asian Crop Science Association Conference (pp. 175–179). Bogor, Indonesia: Research Center for Bioresources and Biotechnology, Bogor Agricultural University.
Ghulamahdi, M., Melati, M., & Sagala, D. (2009). Production of soybean varieties under saturated soil culture on tidal swamps. J. Agron. Indonesia, 37(3), 226–232.
Ghulamahdi, M., Melati, M., Sagala, D., & Sahuri. (2011). Effect of water depth and bed width on the production of soybean (Glycine max L. Merr) under saturated soil culture on tidal swamps. J. ISSAAS, 17(1), 258–259.
Ghulamahdi, M., Welly, H. D., & Sagala, D. (2018). Nutrient uptake, growth and productivity of soybean cultivars at two water depths under saturated soil culture in tidal swamps. Pakistan Journal of Nutrition, 17(3), 124–130.
Kataoka, T., Nakanishi, T. M., Verlag, F., Kataoka, T., & Nakanishi, T. M. (2001). Aluminium distribution in soybean root tip for a short time Al treatment. Journal of Plant Physiology, 158(6), 731–736.
Liao, H., Wan, H., Shaff, J., Wang, X., Yan, X., & Kochian, L. V. (2006). Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant physiology, 141(2), 674–684.
Milivojevi?, D., & Stojanovi?, D. (2003). Role of Calcium in Aluminum Toxicity on Content of Pigments and Pigment?Protein Complexes of Soybean. Journal of Plant Nutrition, 26(2), 341–350.
Mustafa, G., Sakata, K., & Komatsu, S. (2015). Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. Journal of Proteomics, 128, 280–297.
Noya, A. I., Ghulamahdi, M., Sopandie, D., Sutandi, A., & Melati, M. (2014). Interactive effects of aluminum and iron on several soybean genotypes grown in nutrient solution. Asian Journal of Plant Science, 13(1), 18–25.
Sagala, D. (2010). Peningkatan pH tanah masam di tahan rawa pasang surut pada berbagai dosis kapur untuk budidaya kedelai. Jurnal Agroqua, 8(2), 1–5.
Sagala, D., & Suzanna, E. (2016). Penentuan periode kritis cekaman aluminium dalam rangka peningkatan efisiensi produksi kedelai di lahan rawa pasang surut dengan teknologi budidaya jenuh air. Bengkulu.
Sopandie, D. (1990). Studies of plant responses to salt stress. Okayama University, Japan.
Sopandie, D. (2014). Fisiologi adaptasi tanaman terhadap cekaman abiotik pada agroekosistem tropika. Bogor, Indonesia: IPB Press.
Statistics. (2018). Statistics Indonesia. Indonesian Statistic Catalogue. Retrieved from https://www.bps.go.id/
Zheng, S. J. (2010). Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Annals of Botany, 106(1), 183–184.

Downloads

Published

2020-06-30

Issue

Section

Articles

Most read articles by the same author(s)