DAMPAK CEKAMAN MUKA AIR TANAH TERHADAP MORFOLOGIS, ANATOMIS DAN FISIOLOGIS TANAMAN BUNCIS (Phaseolus vulgaris L.) DI FASE GENERATIF

Authors

DOI:

https://doi.org/10.32663/ja.v20i2.3248

Keywords:

adaptation, beans, hypoxia, riparian wetlands

Abstract

Land conversion activities have reduced the availability of dry land for vegetable cultivation, therefore optimization of wetlands needs to be done. One of the potential wetlands is riparian wetlands. This study aims to determine the morphological, anatomical and physiological effects of shallow water table stress and waterloging on beans in riparian wetlands. The research was conducted from October 2017 to January 2018 in experimental ponds located in the Demang Lebar Daun Village, Palembang and at the Postgraduate Integrated Laboratory, Faculty of Agriculture, Sriwijaya University, Palembang. The study used a randomized block design (RBD) with control treatment (not soaked), M-13 (Water table at 13 cm below the soil surface), M-8 (Water table at8 cm below the soil surface), M-3 (Water table at 3 cm below the soil surface) and WL+2 (waterloging at 2 cm above ground level). Each treatment was repeated 3 times. The results showed that water table at 3 cm below the soil surface and waterloging increased proline content but decreased chlorophyll content, relative leaf expansion rate (RLER), specific leaf fresh weight (SLFW), and specific leaf water content (SLWC). Root tissue was formed one day after the treatment. Beans treatedwith water table at 3 cm below the soil surface and waterlogingwere only able to survive for 6 days. Beans are the adaptive plant to water table of more than 3 cm under the soil surface and has prospects for development in riparian wetland.

References

Aldana,F., P.N. Garcia., & G. Fischer.(2014). Effect of waterlogging stress on the growth, development & symptomatology of cape gooseberry (Phyasalis peruviana L.) plants.Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales,38(149),393-400.
Amin MN. (2014). Sukses bertani buncis: sayuranobat kaya manfaat. Garudhawaca. Jakarta.
Ashraf,M & N.M. Akram.(2009). Improving salinity tolerance of plantsthrough conventional breeding and genetic engineering: An analyticalcomparison. Biotechnology Advances, 27, 744-752.
Ashraf, M. (2012). Waterlogging stress in plants: a review. African Journal of Agricultural Research,7(13),1976-1981.
Bansal, R., & Srivastava, J. P. (2015). Effect of waterlogging on photosynthetic and biochemical parameters in pigeonpea. Russian Journal of Plant Physiology, 62(3), 322-327.
Bates,L.S. (1973). Rapid determination of free prolin for water-stress studies.Plant and Soil, 39,205-207.
Bhaskara,G.B., T.H. Yang., & P.E. Verslues. (2015). Dynamic proline metabolism: importance and regulation in water limited environments. Frontiers in Plant Science,6, 484.
Bradford, K.J & T.C. Hsiao.(1982). Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiology,70(5),1508-1513.
Claussen, W. (2005).Proline as a measure of stress in tomato plants. Plant Science, 168(1), 241-248.
Fang, Y.& Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673-689.
Fichman, Y., Gerdes, S.Y., Kovács, H., Szabados, L., Zilberstein, A., & Csonka, L.N. (2015). Evolution of proline biosynthesis:enzymology, ioinformatics, genetics, and transcriptional regulation. Biological Reviews, 90(4),1065-1099.
Gupta, B & Huang, B.(2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014p.

Hazrati, S., Z. Tahmasebi-Sarvestani., S.A.M. Modarres-Sanavy., A. Mokhtassi-Bidgoli., & S. Nicola.(2016). Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry,106,141-148.
Jackson, M.B.& Colmer, T.D. (2005).Response and adaptation by plants to flooding stress. Annals of Botany,96(4),501-505.
Kishor K.,B. Polavarapu., P. Hima Kumari., M.S.L. Sunita.,& N. Sreenivasulu. (2015). Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Frontiers in Plant Science, 6,544.
Lakitan, B., L.I. Widuri., & M. Meihana. 2017. Simplifying procedure for a non-destructive, inexpensive, yet accurate trifoliate leaf area estimation in snap bean (Phaseolus vulgaris). Journal of Applied Horticulture,19(1),15-21.
Lakitan, B., B. Hadi.,S. Herlinda., E. Siaga., L.I. Widuri., K. Kartika., L. Lindiana., Y.Yunindyawati.,& M. Meihana. (2018)a. Recognizing farmers’ practices and constraints for intensifying rice production at Riparian Wetlands in Indonesia. NJAS-Wageningen Jounal of Life Sciences,85,10-20.
Lakitan, B, A. Alberto., L. Lindiana., K. Kartika., S. Herlinda.,&A. Kurnianingsih. (2018)b. The benefits of biochar on rice growth and yield in tropical riparian wetland, South Sumatera, Indonesia. CMUJ Natural Sciences, 17(2),111-126.
Meihana, M., B. Lakitan., Susilawati., M.U. Harun., L.I. Widuri., K. Kartika., E. Siaga., &H. Kriswantoro. (2017). Steady shallow water table did not decrease leaf expansion rate, specific leaf weight, and specific leaf water content in tomato plants. Australian Journal of Crop Science,11(12),1635-1641.
Osakabe, Y., Osakabe, K., Shinozaki, K., & L.S.P.Tran. 2014. Response of plants to water stress. Frontiers in Plant Science.5:86.
Rich, S.M., Ludwig M., Pedersen O., &Colmer, T.D. (2011). Aquatic adventitious roots of the wetl and plant Meionectes brownie can photosynthesize: implications for root function during flooding. New Phytologist. 190:311-319.
Sarker, B.C., Hara, M., & Uemura, M.(2005). Proline synthesis, physiological responses & biomass yield of eggplants during and after repetitive soil moisture stress. Scientia Horticulturae. 103(4):387-402.
Seng, K. H. (2014). The effects of drought, waterlogging and heat stress on tomatoes (Solanum lycopersicon L.) (Doctoral dissertation, Lincoln University).
Takahashi, H., T. Yamauchi., T.D. Colmer.,&M. Nakazono.(2014). Aerenchyma formation in plants.In Low-Oxygen Stress in Plants.247-265. Springer, Vienna.
Teakle, N.L., J. Armstrong., E.G. Barrett?Lennard.,& T.D. Colmer.(2011). Aerenchymatous phellem in hypocotyl and roots enables O2 transport in Melilotus siculus. New Phytologist.190(2): 340-350.
Thomas, A.L., S.M.C. Guerreiro,.&L. Sodek.(2005). Aerenchyma formation & recovery from hypoxia of the flooded root system of nodulated soybean. Annals of Botany. 96(7): 1191-1198.
Turner, N. C.(2018).Turgor maintenance by osmotic adjustment: 40 years of progress. Journal of Experimental Botany. 69(13): 3223-3233.

Xu, M., Ma, H., Zeng, L., Cheng, Y., Lu, G., Xu, J., ... & Zou, X. (2015). The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L. Field Crops Research, 180, 238-245.
Zegaoui, Z., S. Planchais, C. Cabassa, R. Djebbar, O. A. Belbachir., & P. Carol.(2017).. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology.218: 26-34.

Published

2022-12-28

Most read articles by the same author(s)

<< < 15 16 17 18 19 20 21 22 23 24 > >>